
Bootstrapping Informative Graph Augmentation via A Meta Learning Approach

Hang Gao1,2∗ , Jiangmeng Li1,2∗ , Wenwen Qiang1,2† , Lingyu Si1,2 , Fuchun Sun3 ,
Changwen Zheng2

1University of Chinese Academy of Sciences
2Institute of Software Chinese Academy of Sciences

3Tsinghua University
{gaohang, jiangmeng2019, wenwen2018, lingyu, changwen}@iscas.ac.cn, fcsun@tsinghua.edu.cn

Abstract

Recent works explore learning graph representa-
tions in a self-supervised manner. In graph con-
trastive learning, benchmark methods apply various
graph augmentation approaches. However, most
of the augmentation methods are non-learnable,
which causes the issue of generating unbeneficial
augmented graphs. Such augmentation may de-
generate the representation ability of graph con-
trastive learning methods. Therefore, we moti-
vate our method to generate augmented graph by
a learnable graph augmenter, called MEta Graph
Augmentation (MEGA). We then clarify that a
”good” graph augmentation must have uniformity
at the instance-level and informativeness at the
feature-level. To this end, we propose a novel
approach to learning a graph augmenter that can
generate an augmentation with uniformity and in-
formativeness. The objective of the graph aug-
menter is to promote our feature extraction net-
work to learn a more discriminative feature repre-
sentation, which motivates us to propose a meta-
learning paradigm. Empirically, the experiments
across multiple benchmark datasets demonstrate
that MEGA outperforms the state-of-the-art meth-
ods in graph self-supervised learning tasks. Further
experimental studies prove the effectiveness of dif-
ferent terms of MEGA. Our codes are available at
https://github.com/hang53/MEGA.

1 Introduction
Recently, there has been a surge of interest in learning a
graph representation via self-supervised Graph Neural Net-
work (GNN) approaches. GNNs, inheriting the powerful rep-
resentation capability of neural networks, emerged as bench-
mark approaches over many graph representation learning
tasks. Early works mostly require task-dependent labels to
learn a graph representation. However, annotating graphs
is a rather challenging task compared to labeling common

∗Contributed equally to this work, in no particular order.
†Corresponding author

modalities of data, especially in specialized domains. There-
fore, recent research efforts are dedicated to developing self-
supervised graph representation learning methods, which can
eliminate the dependency of the labels [Hu et al., 2020a].

Graph contrastive learning (GCL), one of the most popular
self-supervised methods in graph representation learning, is
proposed based on GNNs and contrastive learning. Under
the learning paradigm of contrastive learning, GCL gener-
ates augmented graphs by adopting graph augmentation [Has-
sani and Khasahmadi, 2020]. After graph encoding, the aug-
mented and original features of the same graph are treated
as positives, and the features of different graphs are treated
as negatives. The object of GCL is to learn a good graph
representation by pulling the positives close and pushing the
negatives apart. However, most of the graph augmentation
approaches are non-learnable, which causes two issues: 1)
the augmentation is excessively weak, e.g., the augmented
graph is indistinguishable from the original graph, and the
contrastive learning model can hardly mine consistent knowl-
edge from them; 2) the augmentation introduces overmuch
noise, and the augmented graph is even more similar to other
graphs. The mentioned issues weaken GCL’s ability to learn
a discriminative representation. Therefore, we motivate our
method to directly learn a graph augmentation, which can as-
sist GCL in generating a good graph representation.

We aim to learn a ”good” graph representation that can
have impressive performance on downstream tasks, but what
is an exact ”good” representation? From [Grill et al., 2020]
[Ermolov et al., 2020], we notice that, at the instance-level, a
good representation naturally has uniformity, e.g., features of
different samples are scattered throughout the hidden space
instead of collapsing to a point. However, such constraint
does not consider the representation’s collapse at the feature-
level. For instance, the learned representation has 256 di-
mensions, but most of them have few differences, which im-
plies that much information learned by the representation is
redundant [Zbontar et al., 2021]. Such redundant informa-
tion may lead to limited informativeness of the representation
and degenerate the representation to model truly discrimina-
tive information. Therefore, we motivate our method to learn
a ”good” representation with uniformity at the instance-level
and informativeness at the feature-level.

To this end, we propose MEta Graph Augmentation
(MEGA) to guide the encoder to learn a discriminative and

ar
X

iv
:2

20
1.

03
81

2v
2

 [
cs

.L
G

]
 2

5
A

pr
 2

02
2

Untrained Encoder first trained

LGA trainedEncoder second trained

Positives

Negatives
Informative Non-Informative

Figure 1: An illustration example of the training process of MEGA.
The figure shows the features in hidden space during training. Red
points depicts the positive features and blue points depicts the neg-
ative features at the instance-level. The gradation of color denotes
the informativeness at the feature-level.

informative graph representation. For training the encoder,
we follow the common setting of contrastive learning [Chen
et al., 2020]. The well self-supervised contrastive learn-
ing approach leads the features to be scattered in the hidden
space. However, in practice, the sufficient self-supervision of
the contrastive learning approach demands hard (informative
at the instance-level) features of positive and negative sam-
ples, e.g., positive features that are relatively far apart and
negative features that are relatively close in the hidden space.
For instance, [Chen et al., 2020] leverages large batch and
memory bank to include more hard features, and [Chuang
et al., 2020] explore to emphasize hard features in training.
At the instance-level, our motivation is to straightforwardly
generate hard graph features by a learnable graph augmenter
(LGA), which uses the encoder’s performance in one itera-
tion to generate hard features for the next iteration by updat-
ing the graph augmentation. Note that the objective of LGA
is not to promote convergence of contrastive loss. On the
contrary, we expect LGA to generate an augmented graph
that can increase the difficulty of the self-supervision prob-
lem (i.e., contrasting). Contrastive learning aims to put the
original and augmented features of a graph together and push
the features of different graphs away, and LGA aims to de-
generate such a process. Therefore, the LGA augmented
graph feature must be hard for contrastive learning. To en-
sure the informativeness of the learned representation at the
feature-level, we propose to train LGA to augment the graph
so that it can improve the encoder to generate a representa-
tion with informativeness at the feature-level. As shown in
Figure 1, LGA is like a teacher that shows different hard and
informative examples (augmented graphs) to the encoder, and
the contrastive loss leads the encoder to learn discriminative
knowledge from them.

The reason why we take a meta-learning approach to up-

date LGA is as follows: the learning paradigm of meta-
learning ensures that the optimization objective of LGA is
improving the encoder to learn representations with unifor-
mity at the instance-level and informativeness at the feature-
level from graphs. However, a regular learning paradigm,
e.g., directly optimizing LGA by the loss of measuring the
uniformity and informativeness of features in hidden space,
can only ensure that the features learned from the augmented
graph are modified. However, the features learned from the
original graph could be collapsed or non-informative. Con-
cretely, the meta-learning paradigm ensures that the encoder
learns the knowledge to generate good representations with
uniformity at the instance-level and informativeness at the
feature-level.

Contributions. The takeaways of this paper are as follows:

• We propose a learnable approach to generate informa-
tive graph augmentation, called meta graph augmenta-
tion, which boosts the performance of graph contrastive
learning.

• We propose an auxiliary meta-learning approach to train
the learnable graph augmenter, which guides the encoder
to learn a representation with uniformity at the instance-
level and informativeness at the feature-level.

• We conduct experiments to compare our method
with state-of-the-art graph self-supervised learning ap-
proaches on benchmark datasets, and the results prove
the superiority of our method.

2 Related works
In this section, we review some representative works on
graph neural networks, graph contrastive learning, and meta-
learning, which are related to this article.

Graph Neural Networks (GNN). GNN can learn the low-
dimensional representations of graphs by aggregating neigh-
borhood information. These representations can then be ap-
plied to various kinds of downstream tasks. Like other neural
network structures, GNNs developed many variants. Graph
Convolution Networks (GCNs) [Kipf and Welling, 2016], as
an extension of the convolutional neural network on graph-
structured data, use convolution operation to transform and
aggregate features from a node’s graph neighborhood. [Xu
et al., 2018] shows that GNNs are at most as powerful as
the Weisfeiler-Lehman test in distinguishing graph structures.
Based on this idea, [Xu et al., 2018] proposed Graph Isomor-
phism Networks (GINs). Graph Attention Networks (GATs)
[Veličković et al., 2017] introduces attention mechanisms
into graph learning.

Contrastive learning. Contrastive Learning is a kind of
self-supervised learning approach that measures the loss in
latent space by contrasting features in hidden space. CMC
[Tian et al., 2020] uses multi-view data to acquire features
for contrasting. In computer vision, many works based on
contrastive learning have achieved outstanding results in dif-
ferent kinds of tasks, such as SimCLR [Chen et al., 2020],
MoCo [He et al., 2020], BYOL [Grill et al., 2020], Bar-
low Twins[Zbontar et al., 2021], etc. As in graph learn-
ing, contrastive learning also has many applications. For in-

1
4

5
2

3
67

8

1
4

5
2

3
67

8

Figure 2: MEGA’s architecture. MEGA uses LGA to generate augmented graph, which and the original graph are encoded together. In
one iteration, the encoder and projection head are trained by back-propagating Lcontrast, and in the next iteration, the LGA is trained by
performing the second-derivative technique on LMEGA. The encoder is trained until convergence.

stance, DGI [Veličković et al., 2018] learns node representa-
tions through contrasting node and graph embeddings. [Has-
sani and Khasahmadi, 2020] learns node-level and graph-
level representations by contrasting the different structures of
a graph. Some semi-supervised methods also adapt the con-
cept of contrastive learning. By designing a semi-supervised
contrastive loss, [Wan et al., 2020] can make use of the scarce
yet valuable class information to achieve even better graph
representation learning.

Meta learning. The objective of meta-learning is to learn
the learning algorithm automatically. Early works [Schmid-
huber, 2014] aim to guide the model (e.g., neural network) to
learn prior knowledge about how to learn new knowledge, so
that the model can efficiently learn new knowledge, e.g., the
model can be quickly fine-tuned to specific downstream tasks
with few training steps and achieve good performance. Re-
cently, researchers explored using meta-learning to find op-
timal hyper-parameters and appropriately initialize a neural
network for few-shot learning [Finn et al., 2017] .

3 Methods

In this section, we introduce the proposed MEta Graph
Augmentation (MEGA). The architecture of MEGA is de-
picted in Figure 2. MEGA proposes to learn informative
graph augmentation by a meta-learning approach. Guided by
the augmented graph, the GNN encoder can mine hidden dis-
criminative knowledge from the original graph.

3.1 Preliminary
We recap necessary preliminary concepts and notations for
further exposition. In this paper, we consider attributed
graphs G = (V ,E) where V is a node set and E is the
corresponding edge set. For G, {Xv ∈ RV |v ∈ V } denotes
the node attributes.

Learning graph representations. Given a graph dataset G
including Gi, where i ∈ J1, NK. Our objective is to learn an
encoder f(·) : G → RD, where f(Gi) is a representation that
contains discriminative information of Gi and can be further
used in downstream task. We assume Gi as a random variable
that is sampled i.i.d from distribution P (G) defined over G.
To learn such discriminative representation f(Gi), we adopt
GNN as the encoder and then perform self-supervised con-
trastive learning in hidden space.

Graph Neural Networks. In this paper, we focus on us-
ing GNN, message passing GNN in particular, as the encoder
f(·). For graph Gi = (Vi,Ei), we denote Hv as the repre-
sentation vector, for each node v ∈ Vi. The k-th layer GNN
can be formulated as:

H(k+1)
v = combine(k)

(
Hk

v , aggregate
(k)(Hk

u

,∀u ∈ N (v))
)
, (1)

where N (v) denotes the neighbors of node v, H(k) is the
representation vector of the node v at layer k, and when
k = 0, H(0) is initialized with the input node features, which
is extracted from X . combine and aggregate are functions

with learnable parameters. After K rounds of massage pass-
ing, a readout function will pool the node representations to
obtain the graph representation hi for Gi:

hi = readout
(
Hv,v ∈ Vi

)
. (2)

Contrastive learning. We follow the preliminaries of
contrastive learning [Tian et al., 2020]: learning an embed-
ding that maximizes agreement between the original and aug-
mented features of the same sample, namely positives, and
separates the features of different samples, namely negatives,
in latent space. We denote G′i is the augmented graph of Gi.

To impose contrastive learning, we feed the inputs Gi and
G′i into the encoder f(·) to learn representations hi and h′i,
and the representations are further mapped into features zi
and z′i by a projection head g(·) [Chen et al., 2020]. The en-
coder f(·) and projection head g(·) are trained by contrasting
the features, and the loss [Oord et al., 2018] is formulated as
follows:

Lcontrast = − log
exp

(
<z+>
τ

)
exp

(
<z+>
τ

)
+
∑

exp
(
<z−>
τ

) (3)

where z+ denotes the pair of {z′i, zi}, z− is a set of pairs,

i.e.,
{
{z′j , zi}, {z′i, zj}

∣∣∣j ∈ J1, NK, j 6= i
}

, < · > denotes a
discriminating function to measure the similarity of features,
and τ is the temperature factor [Chen et al., 2020]. Note that,
after training is completed, the projection head g(·) is dis-
carded, and the representations are directly used for down-
stream tasks.

3.2 Meta graph augmentation
Different from benchmark methods that randomly dropping
or adding edges to augment a graph [Hassani and Khasah-
madi, 2020] [Wan et al., 2020], we motivate our method to
impose graph augmentation in an learnable manner [Suresh et
al., 2021a]. We rethink the learning paradigm of contrastive
learning and find that such an approach relies heavily on hard
and informative features in training. Therefore, to boost the
performance on downstream tasks of the learned representa-
tions, we propose to use a trick of meta-learning to generate
informative graph augmentation, which is to guide the en-
coder to mine discriminative knowledge from graphs.

Learnable graph augmentation. As the architecture
shown in Figure 2, we propose a learnable approach to aug-
ment graph. In detail, suppose A is the adjacency matrix of
Gi where the initial weights of the connected nodes are set to
1 and others are valued by 0. Ã = A+I , where I denotes the
self-connection of each node e ∈ E. We use a neural network
a(·), as the LGA (see Appendix for the implementation), to
generate the augmented graph G′i from the original graph Gi,
where Ã′i is the adjacency matrix with self-connections I of
a graph G′i. Gi and G′i are then encoded into features zi and
z′i by the encoder f(·) and projection head g(·).

Auxiliary meta-learning. In contrastive learning, we need
hard and informative features to learn discriminative repre-
sentations. To this end, we build an LGA and train it by a
meta-learning approach.

In training, we first fix LGA aσ(·) and train the encoder
fφ(·) and the projection head gϕ(·) by back-propagating
Lcontrast, where σ, φ, and ϕ denote the network parameters
of a(·), f(·), and g(·), respectively. Then, fφ(·) and gϕ(·)
are fixed, and aσ(·) is trained by computing its gradients with
respect to the performance of fφ(·) and gϕ(·), and the meta-
learning updating objective is as follows:

arg min
σ

(
LMEGA

(
gϕ̊
(
fφ̊(G)

)
, gϕ̊
(
fφ̊(aσ(G))

)))
(4)

where gϕ̊
(
fφ̊(G)

)
denotes a set of the features extracted from

original graphs, gϕ̊
(
fφ̊(aσ(G))

)
denotes a set that includes

the features of augmented graphs, and aσ(G) denotes G′.
φ̊ and ϕ̊ represent the corresponding parameters of the en-
coder and projection head, which are updated with one gra-
dient back-propagation using the contrastive loss defined in
Equation 3:

φ̊ = φ− `∇φ
(
Lcontrast

(
gϕ
(
fφ(G)

)
, gϕ
(
fφ(G′)

)))
ϕ̊ = ϕ− `∇ϕ

(
Lcontrast

(
gϕ
(
fφ(G)

)
, gϕ
(
fφ(G′)

))) (5)

where ` is the learning rate shared between φ and ϕ. The
idea behind the meta updating objective is that we perform
the second-derivative trick [Liu et al., 2019] to train aσ(·).
Specifically, a derivative over the derivative (i.e., a Hessian
matrix) of {φ, ϕ} is used to update σ. We compute the deriva-
tive with respect to σ by using a retained computational graph
of {φ, ϕ}. Then, σ is updated by

σ = σ − `′∇σ
(
LMEGA

(
gϕ̊
(
fφ̊(G)

)
, gϕ̊
(
fφ̊(Ĝ′)

)))
(6)

where `′ represents the learning rate of σ, and Ĝ′ is the
augmented graphs with stop-gradient, which is defined as
Ĝ′ = aσ(G).detach(). LMEGA is to train aσ(·) to generate
hard and informative augmented graphs defined as follows:

LMEGA = tr(C)− de(C)︸ ︷︷ ︸
instance term

+λ
(
tr(|1−D|2) + de(|D|2)

)︸ ︷︷ ︸
feature term

(7)
where tr(·) denotes the matrix trace function, which is de-
fined as tr(M) =

∑
iMii, and de(·) is a matrix calculation

function defined as de(M) =
∑
i

∑
j 6=iMij . | · |2 presents

a matrix element-wise square function defined as |M |2 =
M × M by Hadamard product, and 1 presents an identity
matrix. λ is the coefficient that controls the balance between
two terms of LMEGA. Intuitively, the instance term aims
to lead MEGA to generate instance-level challenging exam-
ples for self-supervised learning. Inspired by [Zbontar et al.,
2021], we design the feature term to promote the model to
learn dimensionally non-redundant representations, respec-
tively. Concretely, minimizing the proposed LMEGA by us-
ing the second-derivative technique can guide aσ(·) to gen-
erate hard and informative augmented graphs. C denotes the
cross-correlation matrix computed between the features of the

HONG
高亮

Method PROTEINS MUTAG DD COLLAB RDT-M5K IMDB-B IMDB-M
GIN RIU 69.03±0.33 87.61±0.39 74.22±0.30 63.08±0.10 27.52±0.61 51.86±0.33 32.81±0.57
InfoGraph 72.57±0.65 87.71±1.77 75.23±0.39 70.35±0.64 51.11±0.55 71.11±0.88 48.66±0.67
GraphCL 72.86±1.01 88.29±1.31 74.70±0.70 71.26±0.55 53.05±0.40 70.80±0.77 48.49±0.63
AD-GCL 73.46±0.67 89.22±1.38 74.48±0.62 72.90±0.83 53.15±0.78 71.12±0.98 48.56±0.59
MEGA-IL 73.89±0.62 90.34±1.20 75.78±0.63 73.54±0.82 53.16±0.65 71.08±0.73 49.09±0.79
MEGA 74.20±0.73 91.10±1.34 75.56±0.63 73.96±0.73 54.32±0.79 71.95±0.98 49.52±0.62

Table 1: Performance of classification accuracy on datasets from TU Dataset (Averaged accuracy ± std. over 10 runs). We highlight the best
records in bold.

Method molesol mollipo molbbbp moltox21 molsider
Regression tasks (RMSE ↓) Classification tasks (ROC-AUC % ↑)

GIN RIU 1.706±0.180 1.075±0.022 64.48±2.46 71.53±0.74 62.29±1.12
InfoGraph 1.344±0.178 1.005±0.023 66.33±2.79 69.74±0.57 60.54±0.90
GraphCL 1.272±0.089 0.910±0.016 68.22±1.89 72.40±1.01 61.76±1.11
AD-GCL 1.270±0.092 0.926±0.037 68.26±1.32 71.08±0.93 61.83±1.14
MEGA-IL 1.153±0.103 0.852±0.022 68.34±1.38 72.08±0.82 63.37±0.87
MEGA 1.121±0.092 0.831±0.018 69.71±1.56 72.45±0.67 62.92±0.76

Table 2: Performance of chemical molecules property prediction in OGB datasets. There are two kinds of tasks, regression tasks and
classification tasks. We highlight the best records in bold.

original graphs and augmented graphs in a batch, as follows:

Cij =
zi · z′j
|zi| · |z′j |

(8)

where i, j ∈ J1, NK in a batch N of graphs. D is the cross-
correlation matrix computed between the multi-dimensional
features of the original graphs and the corresponding aug-
mented graphs along the batch, which is defined as:

Dpq =

∑
i(zi,p · z′i,q)√∑

i(zi,p)
2 ·
√∑

i(z
′
i,q)

2
(9)

where i ∈ J1, NK indexes batch graphs and p, q ∈ J1, NDK
index the feature dimension of the original graph and the cor-
responding augmented graph, andND denotes the number of
feature dimension. C, D aim to train aσ(·) to generate hard
and informative augmented graphs, respectively.

Concretely, the objective of auxiliary meta-learning is to
enable LGA to learn augmented graphs that are hard and in-
formative for the encoder, thereby improving the encoder’s
learning process for the next iteration.

4 Experiments
In this section, we demonstrate the effectiveness of MEGA
on various benchmark datasets. Our experiments were con-
ducted in an unsupervised learning setting.

4.1 Comparison with state-of-the-art methods
Datasets. We evaluate our method on twelve benchmark
datasets in two major categories: 1) Social Networks: RDT-
M5K, IMDB-B, IMDB-M from TU Dataset [Morris et al.,].
2) Molecules: PROTEINS, MUTAG, COLLAB and DD from
TU Dataset [Morris et al.,] and molesol, mollipo, molbbbp,
moltox21 and molsider from Open Graph Benchmark (OGB)
[Hu et al., 2020b].

Experiment settings. We compared MEGA with four
unsupervised/self-supervised learning baselines, which in-
clude randomly initialized untrained GIN (GIN RIU) [Xu et

al., 2018], InfoGraph [Sun et al., 2020], GraphCL [You et al.,
2020] and AD-GCL [Suresh et al., 2021b]. Experiment re-
sults of InfoGraph [Sun et al., 2020] and GraphCL [You et al.,
2020] show that they generally outperform graph kernel and
network embedding methods including [Kriege et al., 2020],
[Grover and Leskovec, 2016], and [Adhikari et al., 2018].
As discussed in the method section, the meta-learning objec-
tive LMEGA contains two parts: one for evaluating whether
the LGA can generate hard graph features, which function as
instance-level constrains; the other one evaluates whether the
LGA can generate informative graph features, which func-
tions as feature-level constraints. They are balanced by pa-
rameter λ. To study their effects, we set λ = 0 for the abla-
tion study, termed MEGA-IL. We followed the experimen-
tal protocol of AD-GCL, including the train/validation/test
splits. The average classification accuracy with standard devi-
ation on the test results over the last ten runs of training is re-
ported. For a fair comparison, we adopted GIN as the encoder
as other baselines do. We adopt the Adam optimizer with a
learning rate of 10−4 for learnable graph augmentation and a
learning rate of 10−3 for graph encoding. We use 50 train-
ing epochs on all datasets. All methods adopt a downstream
linear classifier or regressor with the same hyper-parameters.

Results. The results are reported in Table 1 and 2. The
results show that MEGA achieves the best results compared
with baselines across benchmark datasets. We attribute such
performance to MEGA’s abilities to generate both hard and
informative augmented graph features. The results show that
MEGA outperforms MEGA-IL across most datasets, which
proves that the feature-level constraints do improve the net-
work to learn informative representations. MEGA-IL still
performs better than most of the baselines that adopt the same
encoder and contrastive learning pattern, which means that
the instance-level constrains of LMEGA work well.

4.2 Evaluation of feature-level constrains
For further evaluation of feature-level constraints, we change
the value of λ and observe how the performance changes.

90

90.2

90.4

90.6

90.8

91

91.2

0.0001 0.001 0.01 0.1 1 10

91.00

90.80

90.60

90.40

90.20

ac
cu
ra
cy

91.20

1010.10.010.0010.0001

λ

(a) MUTAG

73.5

73.6

73.7

73.8

73.9

74

74.1

74.2

74.3

0.001 0.001 0.01 0.1 1 10

74.00

73.90

73.80

73.70

73.60

0.0001 1010.10.010.001

ac
cu
ra
cy

74.20

74.10

λ

74.40

(b) PROTEINS

70

70.5

71

71.5

72

72.5

0.001 0.001 0.01 0.1 1 100.0001 1010.10.010.001

ac
cu
ra
cy

70.50

71.00

71.50

72.00

72.50

λ

(c) IMDB-B

Figure 3: Results of MEGA’s performance with a range of factor λ. We perform MEGA on three benchmark datasets: MUTAG, PROTEINS,
and IMDB-B. The abscissa axis represents the value of λ, and the ordinate axis represents the accuracies.

MEGA-IL MEGAUNTRAINED CCL

input graphs

Graphs with label 0 in
the MUTAG dataset

Graphs with label 1 in the
MUTAG dataset

ouput representations

Figure 4: This figure shows the visualized output graph features on the MUTAG dataset. The graph features are projected into a color image
in RGB format, where different colors represent different types of features. The abscissa axis represents the output feature dimensions of
compared methods, and the ordinate axis represents graphs of different classes.

We adopt three different datasets, including two molecule
datasets and one social network dataset.

The results are reported in Figure 3. The performance
changes as the factor λ changes. When λ takes 0.1, the
performance is optimal among all tasks. The results prove
that feature-level constraints can enhance the discrimination
of features to a certain extent. The feature-level constraints
ensure that the generated augmented graph correlates with
the original graph, preventing LGA from learning outrageous
graph augmentation. However, if we overly increase the im-
pact of feature-level constraints, the generation of hard aug-
mented graph features could be interfered.

4.3 Analyze on representations
To better understand the quality of the representations learned
by MEGA, we visualize the output graph features. For com-
parison, we conducted experiments on four different net-
works: (1) UNTRAINED, a randomly initialized GIN en-
coder without training. (2) CCL, a conventional graph con-
trastive learning network without our proposed LGA. (3)
MEGA-IL, MEGA without feature-level constraints. (4)
MEGA.

The results are shown in Figure 4. We intuitively observe
the representations of each graph and find that MEGA and

MEGA-IL output more ”colorful” results than RI-GIN and
CCL, which indicates that their output is more informative.
In detail, for MEGA and MEGA-IL, there are many verti-
cal lines of different colors, which means that the difference
between the dimensions of the feature is significant. This
phenomenon is more evident on MEGA, indicating that the
feature-level constraints make the feature dimensions less re-
dundant. Another observable phenomenon is that the differ-
ence between the features of different classes generated by
MEGA is more significant than that of other methods, espe-
cially RI-GIN and CCL. We reckon that meta graph augmen-
tation enhances the encoder to learn ”good” representations,
which can thus model discriminative information.

5 Conclusions

This paper proposed a novel meta graph augmentation to
boost the representation ability of graph contrastive learning.
We apply secondary derivative technique to update a learn-
able graph augmenter, which is to generate hard and infor-
mative augmented graph for contrastive learning. This way,
we can yield a representation with uniformity at the instance-
level and informativeness at the feature-level.

6 Acknowledgement
The authors thank all the anonymous reviewers. This work is
supported by the Strategic Priority Research Program of the
Chinese Academy of Sciences, Grant No. XDA19020500.

References
[Adhikari et al., 2018] Bijaya Adhikari, Yao Zhang, Naren

Ramakrishnan, and B Aditya Prakash. Sub2vec: Fea-
ture learning for subgraphs. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 2018.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Inter-
national conference on machine learning. PMLR, 2020.

[Chuang et al., 2020] Ching-Yao Chuang, Joshua Robin-
son, Lin Yen-Chen, Antonio Torralba, and Stefanie
Jegelka. Debiased contrastive learning. arXiv preprint
arXiv:2007.00224, 2020.

[Ermolov et al., 2020] A. Ermolov, A. Siarohin,
E. Sangineto, and N. Sebe. Whitening for self-supervised
representation learning. 2020.

[Finn et al., 2017] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In Proceedings of the 34th ICML.
PMLR, 2017.

[Grill et al., 2020] J. B. Grill, F. Strub, F Altché, C. Tallec,
P. H. Richemond, E. Buchatskaya, C. Doersch, B. A. Pires,
Z. D. Guo, and M. G. Azar. Bootstrap your own latent: A
new approach to self-supervised learning. 2020.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 855–864, 2016.

[Hassani and Khasahmadi, 2020] Kaveh Hassani and
Amir Hosein Khasahmadi. Contrastive multi-view
representation learning on graphs. 2020.

[He et al., 2020] K. He, H. Fan, Y. Wu, S. Xie, and R. Gir-
shick. Momentum contrast for unsupervised visual repre-
sentation learning. In IEEE/CVF CVPR, 2020.

[Hu et al., 2020a] W Hu, B Liu, J Gomes, M Zitnik, P Liang,
V Pande, and J Leskovec. Strategies for pre-training graph
neural networks. In International Conference on Learning
Representations (ICLR), 2020.

[Hu et al., 2020b] Weihua Hu, Matthias Fey, Marinka Zitnik,
Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for
machine learning on graphs. Neural Information Process-
ing Systems (NeurIPS), 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Kriege et al., 2020] Nils M Kriege, Fredrik D Johansson,
and Christopher Morris. A survey on graph kernels. Ap-
plied Network Science, 5(1):1–42, 2020.

[Liu et al., 2019] S. Liu, Andrew J Davison, and E. Johns.
Self-supervised generalisation with meta auxiliary learn-
ing. 2019.

[Morris et al.,] Christopher Morris, Nils M Kriege, Franka
Bause, Kristian Kersting, Petra Mutzel, and Marion Neu-
mann. Tudataset: A collection of benchmark datasets for
learning with graphs. In ICML 2020 Workshop on Graph
Representation Learning and Beyond.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Schmidhuber, 2014] J Schmidhuber. Learning complex, ex-
tended sequences using the principle of history compres-
sion. Neural Computation, 4(2):234–242, 2014.

[Sun et al., 2020] Fan-Yun Sun, Jordon Hoffman, Vikas
Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual
information maximization. In International Conference on
Learning Representations, 2020.

[Suresh et al., 2021a] Susheel Suresh, Pan Li, Cong Hao,
and Jennifer Neville. Adversarial graph augmentation
to improve graph contrastive learning. abs/2106.05819,
2021.

[Suresh et al., 2021b] Susheel Suresh, Pan Li, Cong Hao,
and Jennifer Neville. Adversarial graph augmentation
to improve graph contrastive learning. arXiv preprint
arXiv:2106.05819, 2021.

[Tian et al., 2020] Yonglong Tian, Dilip Krishnan, and
Phillip Isola. Contrastive multiview coding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XI 16, pages
776–794. Springer, 2020.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[Veličković et al., 2018] Petar Veličković, William Fedus,
William L Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. Deep graph infomax. arXiv preprint
arXiv:1809.10341, 2018.

[Wan et al., 2020] Sheng Wan, Shirui Pan, Jian Yang, and
Chen Gong. Contrastive and generative graph convolu-
tional networks for graph-based semi-supervised learning.
arXiv preprint arXiv:2009.07111, 2020.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In International Conference on Learning Rep-
resentations, 2018.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. Advances in Neural
Information Processing Systems, 33:5812–5823, 2020.

[Zbontar et al., 2021] J. Zbontar, J. Li, I. Misra, Y Lecun,
and S. Deny. Barlow twins: Self-supervised learning via
redundancy reduction. 2021.

	1 Introduction
	2 Related works
	3 Methods
	3.1 Preliminary
	3.2 Meta graph augmentation

	4 Experiments
	4.1 Comparison with state-of-the-art methods
	4.2 Evaluation of feature-level constrains
	4.3 Analyze on representations

	5 Conclusions
	6 Acknowledgement

